Calculating the Greeks by Cubature Formulas
نویسنده
چکیده
We provide cubature formulas for the calculation of derivatives of expected values in the spririt of Terry Lyons and Nicolas Victoir. In financial mathematics derivatives of option prices with respect to initial values, so called Greeks, are of particular importance as hedging parameters. The proof of existence of Cubature formulas for Greeks is based on an argument, which leads to the calculation of Greeks in an asymptotic sense – even without Hörmander’s condition. Cubature formulas then allow to calculate these quantities very quickly. Simple examples are added to the theoretical exposition.
منابع مشابه
Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree
We study cubature formulas for d-dimensional integrals with a high trigonometric degree. To obtain a trigonometric degreè in dimension d, we need about d ` =`! function values if d is large. Only a small number of arithmetical operations is needed to construct the cubature formulas using Smolyak's technique. We also compare diierent methods to obtain formulas with high trigonometric degree. Abs...
متن کاملConstruction of spherical cubature formulas using lattices
We construct cubature formulas on spheres supported by homothetic images of shells in some Euclidian lattices. Our analysis of these cubature formulas uses results from the theory of modular forms. Examples are worked out on S for n = 4, 8, 12, 14, 16, 20, 23, and 24, and the sizes of the cubature formulas we obtain are compared with the lower bounds given by Linear Programming.
متن کاملNumerical Cubature from Archimedes' Hat-box Theorem
Archimedes’ hat-box theorem states that uniform measure on a sphere projects to uniform measure on an interval. This fact can be used to derive Simpson’s rule. We present various constructions of, and lower bounds for, numerical cubature formulas using moment maps as a generalization of Archimedes’ theorem. We realize some well-known cubature formulas on simplices as projections of spherical de...
متن کاملOn the Approximate Calculation of Double Integrals
Cubature formulas are obtained which are optimal or asymptotically optimal on given sets of functions. These formulas consist of line integrals which may be evaluated by optimal or asymptotically optimal quadrature formulas. The advantage of these formulas over the optimal and asymptotically optimal cubature formulas with rectangular-lattices of knots is shown.
متن کاملNumerical Cubature Using Error-Correcting Codes
We present a construction for improving numerical cubature formulas with equal weights and a convolution structure, in particular equal-weight product formulas, using linear error-correcting codes. The construction is most effective in low degree with extended BCH codes. Using it, we obtain several sequences of explicit, positive, interior cubature formulas with good asymptotics for each fixed ...
متن کامل